26 research outputs found

    A Scale Mixture Perspective of Multiplicative Noise in Neural Networks

    Full text link
    Corrupting the input and hidden layers of deep neural networks (DNNs) with multiplicative noise, often drawn from the Bernoulli distribution (or 'dropout'), provides regularization that has significantly contributed to deep learning's success. However, understanding how multiplicative corruptions prevent overfitting has been difficult due to the complexity of a DNN's functional form. In this paper, we show that when a Gaussian prior is placed on a DNN's weights, applying multiplicative noise induces a Gaussian scale mixture, which can be reparameterized to circumvent the problematic likelihood function. Analysis can then proceed by using a type-II maximum likelihood procedure to derive a closed-form expression revealing how regularization evolves as a function of the network's weights. Results show that multiplicative noise forces weights to become either sparse or invariant to rescaling. We find our analysis has implications for model compression as it naturally reveals a weight pruning rule that starkly contrasts with the commonly used signal-to-noise ratio (SNR). While the SNR prunes weights with large variances, seeing them as noisy, our approach recognizes their robustness and retains them. We empirically demonstrate our approach has a strong advantage over the SNR heuristic and is competitive to retraining with soft targets produced from a teacher model

    Active Learning for Multilingual Fingerspelling Corpora

    Full text link
    We apply active learning to help with data scarcity problems in sign languages. In particular, we perform a novel analysis of the effect of pre-training. Since many sign languages are linguistic descendants of French sign language, they share hand configurations, which pre-training can hopefully exploit. We test this hypothesis on American, Chinese, German, and Irish fingerspelling corpora. We do observe a benefit from pre-training, but this may be due to visual rather than linguistic similaritie

    Hybrid Models with Deep and Invertible Features

    Full text link
    We propose a neural hybrid model consisting of a linear model defined on a set of features computed by a deep, invertible transformation (i.e. a normalizing flow). An attractive property of our model is that both p(features), the density of the features, and p(targets | features), the predictive distribution, can be computed exactly in a single feed-forward pass. We show that our hybrid model, despite the invertibility constraints, achieves similar accuracy to purely predictive models. Moreover the generative component remains a good model of the input features despite the hybrid optimization objective. This offers additional capabilities such as detection of out-of-distribution inputs and enabling semi-supervised learning. The availability of the exact joint density p(targets, features) also allows us to compute many quantities readily, making our hybrid model a useful building block for downstream applications of probabilistic deep learning.Comment: ICML 201

    Do Deep Generative Models Know What They Don't Know?

    Full text link
    A neural network deployed in the wild may be asked to make predictions for inputs that were drawn from a different distribution than that of the training data. A plethora of work has demonstrated that it is easy to find or synthesize inputs for which a neural network is highly confident yet wrong. Generative models are widely viewed to be robust to such mistaken confidence as modeling the density of the input features can be used to detect novel, out-of-distribution inputs. In this paper we challenge this assumption. We find that the density learned by flow-based models, VAEs, and PixelCNNs cannot distinguish images of common objects such as dogs, trucks, and horses (i.e. CIFAR-10) from those of house numbers (i.e. SVHN), assigning a higher likelihood to the latter when the model is trained on the former. Moreover, we find evidence of this phenomenon when pairing several popular image data sets: FashionMNIST vs MNIST, CelebA vs SVHN, ImageNet vs CIFAR-10 / CIFAR-100 / SVHN. To investigate this curious behavior, we focus analysis on flow-based generative models in particular since they are trained and evaluated via the exact marginal likelihood. We find such behavior persists even when we restrict the flows to constant-volume transformations. These transformations admit some theoretical analysis, and we show that the difference in likelihoods can be explained by the location and variances of the data and the model curvature. Our results caution against using the density estimates from deep generative models to identify inputs similar to the training distribution until their behavior for out-of-distribution inputs is better understood.Comment: ICLR 201

    Exploiting Inferential Structure in Neural Processes

    Full text link
    Neural Processes (NPs) are appealing due to their ability to perform fast adaptation based on a context set. This set is encoded by a latent variable, which is often assumed to follow a simple distribution. However, in real-word settings, the context set may be drawn from richer distributions having multiple modes, heavy tails, etc. In this work, we provide a framework that allows NPs' latent variable to be given a rich prior defined by a graphical model. These distributional assumptions directly translate into an appropriate aggregation strategy for the context set. Moreover, we describe a message-passing procedure that still allows for end-to-end optimization with stochastic gradients. We demonstrate the generality of our framework by using mixture and Student-t assumptions that yield improvements in function modelling and test-time robustness.Comment: Uncertainty in Artificial Intelligence (UAI) 202
    corecore